Università degli Studi "**Mediterranea**" di Reggio Calabria Facoltà d'Ingegneria – **Meccanica Razionale** Anno Accademico 2007/2008 – Appello del 26/06/2008

Esercizio (il cui punto i) è obbligatorio) Valore domande: i) 11 punti, ii) 6 punti, iii) 7 punti, iv) 4 punti.

In un piano verticale Oxy un sistema materiale è costituito da un'asta omogenea AB di massa m e lunghezza L, vincolata con l'estremo A nell'origine degli assi, mentre nell'estremo B è saldato un punto materiale T di massa 2m. Sul sistema agiscono:

- I) una molla di costante elastica k > 0 applicata nel baricentro del sistema e centro il punto Q posto sull'asse verticale Oy a distanza 2L da O;
- II) un momento $\mathbf{M} = (OB' \times m\mathbf{g})/6$ agente sull'asta, con \mathbf{g} accelerazione di gravità e B' proiezione di B sull'asse orizzontale Ox.

Supponendo il piano Oxy ruotante uniformemente intorno all'asse Oy con velocità angolare costante ω ed i vincoli perfetti, determinare:

- i) la, o le, equazioni pure del moto del sistema materiale;
- ii) le reazioni vincolari, interne ed esterne, agenti sul sistema all'istante iniziale quando l'asta è disposta sull'asse Ox con l'estremo B avente velocità $\mathbf{v}_B = \mathbf{u}_0 \mathbf{j}$, $\mathbf{u}_0 > 0$.

Supponendo, inoltre, che le costanti del moto siano legate dalle seguenti relazioni, e cioè $mg = kL = m\omega^2 L$, determinare:

- iii) le posizioni di equilibrio del sistema materiale, studiandone la stabilità;
- iv) le reazioni vincolari in una posizione di equilibrio stabile.

Quesiti (ogni risposta esatta vale due punti)

- 1. Un sistema di vettori applicati paralleli concordi è riducibile a:
- i) zero; ii) una coppia; iii) un vettore applicato; iv) un vettore e una coppia.

2. Dato un sist	ema costituito da	a due gusci sferici omo	ogenei concentrici,	di masse
uguali, dire quanti	assi centrali d'in	nerzia si conoscono a p	oriori:	
i) nessuno;	ii) uno;	iii) due;	iv) tre .	

- 3. Date due aste AB e BC nello spazio, incernierate tra loro per l'estremo B ed inoltre con l'estremo A vincolato ad un piano, dire quante componenti hanno le relative reazioni vincolari nel caso in cui i vincoli siano perfetti:
 - i) tre; ii) **quattro**; iii) cinque; iv) sette.
- 4. Date due aste saldate tra loro per un estremo O, vincolate a scorrere con O su una retta r ed a ruotare mantenendosi ortogonali ad essa. Dire quali sono la (o le) equazioni pure del moto (EC = Equazione Cardinale):
 - i) il Teorema del momento angolare assiale; ii) <u>le due EC proiettate su Or</u>;
 - iii) le due EC proiettate ortogonalmente ad Or; iv) le due EC.

SOLUZIONI DELL'ESERCIZIO DEL 26/06/2008

i) Il sistema materiale possiede un grado di libertà; se prendiamo come parametro lagrangiano l'angolo θ che l'asta forma con l'asse Ox, considerato in verso antiorario, l'equazione pura del moto è data dal teorema del momento angolare assiale di asse Oz:

$$mL^2 d^2\theta/dt^2 = 5/7 kL^2 cos\theta - 8/7 mgLcos\theta - mL^2\omega^2 sen\theta cos\theta$$
.

ii) All'istante iniziale i vincoli esterni sono dati da:

$$\phi_{O1}(0) = -5 \text{ mu}_0^2 / (2\text{L}) + 5/6*\text{kL} - 5/2* \text{ mL}\omega^2$$
,
 $\phi_{O2}(0) = 1/7*\text{mg} - 3/14*\text{kL}$, $\phi_{O3}(0) = \phi_{B3}(0) = 0$,

mentre il vincolo interno di saldatura è:

$$\phi_{T1}(0) = 2m (\omega^2 L - u_0^2 / L), \quad \phi_{T2}(0) = 10kL/7 - 2mg/7, \quad \phi_{T3}(0) = 0.$$

iii) Il sistema di forze attive agenti è conservativo e giroscopico ed i vincoli sono perfetti, dunque il teorema di Dirichlet fornisce quattro posizioni di equilibrio per θ :

$$\theta_1 = \pi/2$$
 \Rightarrow H $(\theta_1) > 0$ e la posizione di equilibrio è instabile,
 $\theta_2 = 3\pi/2$, \Rightarrow H $(\theta_2) > 0$ e la posizione di equilibrio è instabile,
 $\theta_3 = \arcsin(-3/7)$, \Rightarrow H $(\theta_3) < 0$ e la posizione di equilibrio è stabile,
 \Rightarrow H $(\theta_4) < 0$ e la posizione di equilibrio è stabile.

iv) Scegliendo come posizione di equilibrio stabile $\theta_3 = \arcsin(-3/7)$, si ha:

$$\phi_{O1}(\theta_3) = -10 \text{kL sqrt}(10) / 21, \quad \phi_{O2}(\theta_3) = 9 \text{kL} / 14, \quad \phi_{O3}(\theta_3) = \phi_{B3}(\theta_3) = 0$$

 $\phi_{T1}(\theta_3) = -4 \text{kL sqrt}(10) / 7, \quad \phi_{T2}(\theta_3) = 2 \text{kL}, \quad \phi_{T3}(\theta_3) = 0,$

dove sqrt(10) indica la radice quadrata di 10.

Università degli Studi "**Mediterranea**" di Reggio Calabria Facoltà d'Ingegneria – **Meccanica Razionale** Anno Accademico 2007/2008 – Appello del 14/07/2008

Esercizio (il cui punto i) è obbligatorio) Valore domande: i) 10 punti, ii) 6 punti, iii) 7 punti, iv) 4 punti.

Un sistema materiale è costituito da una lamina quadrata omogenea ABCD, dilato L e massa m, vincolata nei punti D ed F del lato AD (F essendone il punto medio) all'asse scorrevole orizzontale Ox. Sul sistema materiale agiscono:

- I) un momento $\mathbf{M} = 2k$ (AB' x AB), con B' proiezione di B sul piano orizzontale Oxz e k > 0;
- II) una molla di costante elastica k applicata nel vertice B della lamina e centro il punto B' suddetto;
- III) una molla di costante elastica h > 0 applicata nel vertice A della lamina e centro l'origine O della terna fissa.

Supponendo il solo vincolo in F con attrito, determinare:

- i) la, o le, equazioni pure del moto del sistema materiale;
- ii) le reazioni vincolari agenti sul sistema all'istante iniziale quando la lamina è disposta sul piano Oxz con il punto A in quiete, a distanza L da O, ed il punto B avente velocità $\mathbf{v}_B = \mathbf{u}_0 \, \mathbf{j}, \, \mathbf{u}_0 > 0$.

Posto, inoltre, mg = kL = hL, determinare:

- iii) tutte le posizioni di equilibrio del sistema materiale;
- iv) le reazioni vincolari agenti sul sistema in una posizione di equilibrio a scelta.

Quesiti (ogni risposta esatta vale due punti)

1.	Dato un sistema di vettori	applicati con l'in	nvariante scalare non nu	ıllo, esso è
riducibile	e a:			
i) zero;	; ii) un vettore applicato;	iii) una coppia;	iv) <u>un vettore e una</u>	<u>coppia</u> .

2.	Data una la	mina omoge	nea avente	la forma	dı un	semice	erchio, dire	quant	i assi
centrali d	'inerzia son	o anche assi	principali	rispetto a	ad un	punto j	proiezione	del ve	ertice
sul diame	etro di base:								
i) zero;	ii) un	10;	iii)	due;			iv) tre .		

3.	Data una lamina	omogenea piana	vincolata a	muoversi	nel suo	piano,	dire
quanti gra	adi di libertà possie	de:					
i) due;	ii) <u>tre;</u>	iii)	quattro;	iv	v) cinque	e .	

4. Dato un corpo omogeneo di forma conica vincolato a muoversi con il vertice Q fisso, dire qual è la formula ottimale per il calcolo del momento della quantità di moto (G = baricentro, $\omega = velocità angolare$):

i) $\underline{\sigma}_{G}\omega$;	ii) <u>σο</u> ω;	iii) il 2° teorema di Konig;	iv) QG x Mv _G
-------------------------------------	------------------	------------------------------	--------------------------

SOLUZIONI DELL'ESERCIZIO DEL 14/07/2008

i) La lamina possiede due gradi di libertà, e dunque vi sono due equazioni pure del moto corrispondenti ai parametri lagrangiani x_A , coordinata del vertice A, e θ , angolo che il piano della lamina forma con il piano orizzontale Oxz, considerato in verso orario.

Un'equazione pura è la 1ª Equazione Cardinale della Dinamica proiettata lungo Ox:

$$m d^2x_A/dt^2 = -hx_A + A_F$$
,

dove l'attrito A_F è dato dalla legge di Coulomb-Morin per la dinamica:

$$\begin{split} A_F &= - \; f_d \; \{ [mL/2 \; [cos\theta \; d^2\theta/dt^2 - sen\theta \; (d\theta/dt)^2] + mg \; - \; m \; cos\theta \; (dx_A/dt) \, (d\theta/dt)]^2 \; + \\ &+ [- \; mL/2 \; [sen\theta \; d^2\theta/dt^2 + cos\theta \; (d\theta/dt)^2] \; + \; \; m \; sen\theta \; (dx_A/dt) \, (d\theta/dt)]^2 \}^{1/2} \; (segno \; dx_A/dt). \end{split}$$

L'altra equazione pura è data dal Teorema del momento angolare assiale di asse Ax per l'asta:

-
$$1/3 \text{ mL}^2 \text{ d}^2\theta/\text{dt}^2 = 1/2 \text{ mgLcos}\theta - \text{kL}^2\text{sen}\theta\text{cos}\theta$$
.

ii) All'istante iniziale le reazioni vincolari sono date da:

$$\phi_{D2}(0) = 0$$
, $\phi_{D3}(0) = 0$, $\phi_{F2}(0) = mg/4$, $\phi_{F3}(0) = -mu_o^2/(2L)$, $A(0) = 0$.

iii) Le posizioni di equilibrio della lamina sono quattro per θ , mentre la legge di Coulomb-Morin per la statica fornisce i corrispondenti quattro intervalli per x_A :

$$\begin{array}{ll} \theta_1 = \pi/2, & -3f_sL \leq x_A \leq 3f_sL, \\ \theta_2 = 3\pi/2, & -f_sL \leq x_A \leq f_sL, \\ \end{array} \qquad \begin{array}{ll} \theta_3 = \pi/6 \;, & -2f_sL \leq x_A \leq 2f_sL, \\ \theta_4 = 5\pi/6 \;, & -2f_sL \leq x_A \leq 2f_sL. \end{array}$$

iv) Scegliendo la posizione di equilibrio $\theta_1 = \pi/2$ e $x_{A1} = 0$, si ha:

$$\varphi_{D2} = \text{--} kL, \quad \varphi_{D3} = 0, \quad \varphi_{F2} = mg, \quad \varphi_{F3} = 0, \quad A_F = 0.$$

Università degli Studi "**Mediterranea**" di Reggio Calabria Facoltà d'Ingegneria – **Meccanica Razionale** Anno Accademico 2007/2008 – Appello del 09/09/2008

Esercizio (il cui punto i) è obbligatorio) Valore domande: i) 10 punti, ii) 6 punti, iii) 8 punti, iv) 3 punti.

In un piano verticale Oxy, che trasla lungo l'asse Ox con accelerazione costante a_{τ} i, un sistema materiale è costituito da un'asta AB di lunghezza 2L, avente densità di massa nel generico punto T data da $\mu(T) = (m/2L^2)|AT|$ e vincolata nel suo punto medio all'origine O degli assi, e da un punto materiale P di massa m, vincolato a scorrere lungo l'asse verticale Oy.

Sul sistema agiscono:

- I) una molla di costante elastica k > 0 applicata nell'estremo A dell'asta e centro il punto Q posto sul semiasse positivo Oy a distanza 2L da O;
 - II) una molla di costante elastica h > 0 collegante il punto P al baricentro G dell'asta;
 - III) un momento $\mathbf{M} = 8 \text{ mg x OG'}$ agente sull'asta, con G' proiezione di G sull'asse Ox. Determinare:
 - i) la, o le, equazioni pure del moto del sistema materiale;
- ii) le reazioni vincolari agenti sul sistema all'istante iniziale quando il sistema è in quiete, con il punto A dell'asta sul semiasse negativo Oy ed il punto P nell'origine degli assi.

Posto, inoltre, mg = kL = hL ed $a_{\tau} = 0$, determinare:

- iii) tutte le posizioni di equilibrio del sistema materiale, studiandone la stabilità;
- iv) le reazioni vincolari agenti sul sistema in una posizione di equilibrio stabile.

Quesiti (ogni risposta esatta vale due punti)

1) Da	to un	disco	omogeneo	ruotante	uniformemente	intorno	ad ı	ın asso	e a	lui
perpendic	colare e	passar	ite per un pu	into P del	suo bordo, dire s	e il siste	ma di	forze a	ssifu	ıghe
agenti è r	iducibi	le a:								
i) zero	; ii) un vei	ttore applica	ato; iii) u	ına coppia; iv) u	n vettore	e una	coppia.		

2) Dato	un settore	circolare	omogeneo	piano	di	apertura	angolare	α,	dire	quanti	assi
centrali d'in	erzia si cor	noscono a	priori:								
i) zero;		ii) uno		iii)	du	e;			iv) 1	tre.	

3) Dato un s	istema costituito da un	n cono omogeneo vincolato	o con il proprio vertice V a
muoversi senza	attrito su di una super	ficie emisferica con la con	cavità rivolta verso il basso,
dire quante com	ponenti hanno le relati	ve reazioni vincolari:	
i) zero;	ii) una;	iii) due;	iv) tre.

- 4) Dato un punto P vincolato a muoversi su una circonferenza il cui piano di appartenenza ruota uniformemente intorno ad una asse tangente ad un punto Q del suo bordo, dire qual è l'equazione pura del moto (EDP = Equazione della Dinamica del Punto):
 - i) l'EDP; ii) <u>l'EDP proiettata sulla tangente alla circonferenza in P</u>;
 - iii) l'EDP proiettata sull'asse di rotazione; iv) il teorema del momento angolare assiale.

SOLUZIONI DELL'ESERCIZIO DEL 09/09/2008

i) Le coordinate lagrangiane sono due, corrispondenti ai gradi di libertà del sistema: y_P per il punto e l'angolo θ che l'asta forma con l'asse Ox in verso antiorario. La 1^a equazione pura si ottiene dalla 2^a legge di Newton per il punto proiettata lungo l'asse Oy:

$$m d^2y_P/dt^2 = -mg + hLsen\theta /3 - hy_P$$
.

La 2^a equazione pura si ottiene dalla 2^a Equazione Cardinale della Dinamica per l'asta con polo in O, proiettata lungo l'asse Oz:

$$mL^{2} d^{2}\theta/dt^{2}/3 = -mgL\cos\theta/3 + hLy_{p}\cos\theta/3 - 2kL^{2}\cos\theta + mLa_{r}\sin\theta/3 + 8mgL\cos\theta/3.$$

ii) All'istante iniziale le reazioni vincolari sono date da:

$$\phi_{O1}(0) = 2ma_{\tau}/3$$
, $\phi_{O2}(0) = mg + hL/3 - 3kL$, $\phi_{O3}(0) = \phi_{B3}(0) = \phi_{P3}(0) = 0$, $\phi_{P1}(0) = ma_{\tau}$.

iii) Poiché il sistema di forze agenti è conservativo e giroscopico ed i vincoli sono perfetti, applicando il teorema di Dirichlet si trovano 4 posizioni di equilibrio per θ ed y_p e, poiché $H_{11} =$ - h è costante e < 0, per ogni θ ed y_p , basta verificare se il determinante Hessiano e positivo per stabilire quali sono stabili: si ha

```
\theta_1 = 0, y_{p1} = -L \Rightarrow |H(0, -L)| < 0 e la posizione di equilibrio è instabile,

\theta_2 = \pi, y_{p2} = -L \Rightarrow |H(\pi, -L)| < 0 e la posizione di equilibrio è instabile,

\theta_3 = \pi/2, y_{p3} = -2L/3 \Rightarrow |H(\pi/2, -2L/3)| > 0 e la posizione di equilibrio è stabile,

\theta_4 = 3\pi/2, y_{p4} = -4L/3 \Rightarrow |H(3\pi/2, -4L/3)| > 0 e la posizione di equilibrio è stabile.
```

iv) Scegliendo, dunque, la posizione di equilibrio stabile $\theta_3 = \pi/2$ e $y_{P3} = -2L/3$, si ha:

$$\phi_{O1} = 0$$
, $\phi_{O2} = mg + 4kL$, $\phi_{O3} = \phi_{B3} = \phi_{P1} = \phi_{P3} = 0$.

Università degli Studi "**Mediterranea**" di Reggio Calabria Facoltà d'Ingegneria – **Meccanica Razionale** Anno Accademico 2007/2008 – Appello del 12/12/2008

Esercizio (il cui punto i) è obbligatorio) Valore domande: i) 10 punti, ii) 6 punti, iii) 5 punti, iv) 4 punti.

In un piano verticale Oxy un sistema materiale è costituito da un disco omogeneo di massa 2m e raggio R, che rotola senza strisciare lungo l'asse orizzontale Ox, e da un punto materiale di massa m saldato in un punto P del suo bordo. Sul sistema agiscono:

- I) una molla di costante elastica k > 0 applicata nel baricentro G del disco e centro il punto Q posto sul semiasse positivo Oy a distanza R da O;
 - II) una forza costante $\mathbf{F} = \beta \mathbf{k}$ applicata nel punto P, con k versore dell'asse Oz;
- III) un momento $\mathbf{M} = (\mathrm{OH} + \mathrm{PG}) \times \mathrm{m}\mathbf{g}$ agente sul disco, dove H è il punto di contatto tra disco e asse Ox e \mathbf{g} l'accelerazione di gravità.

Determinare:

- i) la, o le, equazioni pure del moto del sistema materiale;
- ii) le reazioni vincolari agenti sul sistema all'istante iniziale quando il sistema si trova con P nell'origine O e $\mathbf{v}_G = \mathbf{u}_0$ i, $\mathbf{u}_0 > 0$ ed i versore dell'asse Ox.
 - iii) tutte le posizioni di equilibrio del sistema materiale, studiandone la stabilità;
 - iv) le reazioni vincolari agenti sul sistema in una posizione di equilibrio stabile.

Quesiti (ogni risposta esatta vale due punti)

1. In un piano Oxy, ruotante uniformemente intorno all'asse Oy, una lamina quadrata omogenea OABC è vincolata nel vertice O a ruotare intorno al terzo asse

Oz. II sistema	i di forze di Coriolis agei	nti sulla lamina e d	dunque riducibi	le a:
i) zero; ii)	un vettore applicato;	iii) una coppia;	iv) un vettore	e una coppia.
	asta omogenea di lungh nferenza fissa di raggio plari:			
i) due;		iii) qua	ittro;	iv) cinque.

3. Data una sfera omogenea di raggio R, dire quanti assi centrali d'inerzia sono anche assi principali rispetto ad un punto distante (3/2)R dal suo baricentro:
i) zero;
ii) uno;
iii) due;
iv) **tre**.

4. Dato un disco omogeneo vincolato in un piano Oxy a scorrere con il baricentro lungo l'asse Oy ed a ruotare con velocità angolare ω , dire qual'è la formula ottimale per il calcolo del momento della quantità di moto:

i) <u>il 2° teorema di König</u>; ii) $\underline{\sigma}_G \omega$; iii) OG x M \mathbf{v}_G ; iv) $I_{Oz} \omega$.

SOLUZIONI DELL'ESERCIZIO DEL 12/12/2008

i) Il sistema possiede un solo grado di libertà; come parametro lagrangiano prendiamo l'angolo θ che il raggio OP del disco forma con il raggio OH, (H punto di contatto tra disco e asse Ox), preso in verso orario e supponendo che, all'istante iniziale, $\theta(t_0) = 0$.

Allora l'equazione pura si ottiene dalla 2^a Equazione Cardinale della Dinamica con polo in H, proiettata lungo l'asse Hz:

$$mR^2 d^2\theta/dt^2 (2\cos\theta - 5) - 2mR^2 \sin\theta (d\theta/dt)^2 = (kR^2 - mgR)\theta$$
.

ii) Le reazioni vincolari esterne all'istante iniziale sono date da:

$$\phi_{G3}(0) = \phi_{H1}(0) = \phi_{H3}(0) = 0$$
, $\phi_{H2}(0) = m(u_0^2/R + 3g)$, $\phi_{P3}(0) = -\beta$,

mentre il vincolo interno di saldatura in P è dato da:

$$\phi_{PS}(0) = m \left(u_0^2/R + g\right) \mathbf{j} .$$

iii) Poiché il sistema di forze attive agenti è conservativo e giroscopico ed i vincoli sono perfetti, il teorema di Dirichlet fornisce una sola posizione di equilibrio stabile per θ :

$$\theta_1 = 0$$
,

mentre per ogni θ , con mg = kR, si hanno solo posizioni di equilibrio indifferente.

iv) Scegliendo la posizione $\theta_1 = 0$, allora:

$$\phi_{P3}(\theta_1) = -\beta$$
, $\phi_{G3}(\theta_1) = \phi_{H1}(\theta_1) = \phi_{H3}(\theta_1) = 0$, $\phi_{H2}(\theta_1) = 3mg$, $\phi_{PS}(\theta_1) = mgj$.

Università degli Studi "Mediterranea" di Reggio Calabria Facoltà d'Ingegneria – Meccanica Razionale Anno Accademico 2007/2008 – Appello del 9/1/2009

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica.

Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo.

L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

In un piano verticale Oxy, che ruota uniformemente intorno all'asse verticale Oy con velocità angolare ω, un sistema materiale è costituito da un'asta AB di lunghezza L, avente densità di massa nel generico punto P data da $\mu(P) = (6m/L^2) |AP|$ e vincolata a scorrere con attrito con l'estremo A sull'asse orizzontale Ox.

Sul sistema agiscono:

- I) una molla, di costante elastica h positiva, applicata nell'estremo B dell'asta e centro O;
- II) un momento, dovuto ad una coppia di forze, N = h (OA x BB'), dove B' è la proiezione di B sull'asse Ox.

Determinare:

- e

 ii) le reazioni vincol in O e l'estremo B sul si dell'asse orizzontale (5 p Posto, quindi, h = m iii) tutte le posizioni 	semiasse positivo oriz Dunti) . $100^2 = \text{mg/L}$, determina di equilibrio del sisten	all'istante iniziale qu zzontale, entrambi co re: na materiale (6 punti	ando l'asta si trova con l'estremo A en velocità \mathbf{u}_0 i, $\mathbf{u}_0 < 0$ ed i versore
Q	uesiti a risposta chiu	sa del valore di due	punti ciascuno
a ruotare attorno al suo c	centro fisso C. Dire se	il sistema di forze di	Cr, un disco omogeneo è vincolato Coriolis è riducibile a: iv) un vettore e una coppia.
2. Data una lamina re punto da uno dei due lati i) zero;	_		orzionale alla distanza del generico i conoscono a priori: iv) <u>tre</u> .
costante elastica k è:	moto per un oscillato ii) m ü = k u;		nensionale lungo u, di massa m e iv) m $\ddot{u} = 0$.
dell'energia cinetica è (C	Gè il baricentro ed ω l	a velocità angolare):	a formula ottimale per il calcolo Mv_G^2 ; iv) $\frac{1/2}{2} \frac{Mv_A^2 + \frac{1}{2}I_{As} \omega^2}{2}$.
Ai sensi del D. Lgs. 30/06	5/2003, n. 196, si autorizza	la pubblicazione online i	n chiaro dell'esito della prova.
COGNOME:	NOME:	NUN	MERO DI MATRICOLA:
CORSO DI LAUREA:		FIRMA:	

SOLUZIONI DEI OUESITI A RISPOSTA APERTA DEL 09/01/2009

i) Vi sono due equazioni pure relative ai due parametri lagrangiani, coordinata x_A del punto A ed angolo θ formato dall'asta con l'asse Ox in verso antiorario.

Una è la prima Equazione Cardinale della Dinamica proiettata lungo Ox:

$$3m d^2x_A/dt^2 - 2mL \left[sen\theta d^2\theta/dt^2 + cos\theta (d\theta/dt)^2 \right] = -hx_A - hLcos\theta + 3m\omega^2 (x_A + 2Lcos\theta/3) + A_A$$

dove l'attrito A_A è dato dalla legge di Coulomb-Morin per la dinamica:

$$\begin{split} A_A &= -f_d \{ [2mL[-cos\theta \ d^2\theta/dt^2 + sen\theta(d\theta/dt)^2] + 3mg - hLsen\theta]^2 + \\ &+ [4m\omega L \ sen\theta \ (d\theta/dt) - 6m\omega \ dx_A/dt]^2 \}^{1/2} \ (segno \ di \ dx_A/dt). \end{split}$$

La seconda equazione pura è il Teorema del momento angolare assiale di asse Az:

$$2mLsen\theta~d^2x_A/dt - 3/2~mL^2~d^2\theta/dt^2 = -2mgLcos\theta + 6m\omega^2~sen\theta~(Lx_A/3 + L^2cos\theta/4) - 2~hLx_Asen\theta~.$$

ii) Le reazioni vincolari agenti sul sistema all'istante iniziale sono:

$$\phi_{A2}(0) = mg/3, \;\; \phi_{A3}(0) = \text{-}\; 6m\omega u_0 \; , \; A_A = mf_d \left[\; g^2/9 + 36\; \omega^2 \; {u_0}^2 \; \right]^{1/2} \; , \;\; \phi_{B3}(0) = \text{-}\; 4m\omega u_0 \; ; \;\; \phi_{B3}(0) = \text{-}\;$$

se il vincolo rotazionale è realizzato con un momento: $\Psi(0) = 4mL\omega u_0$.

iii) Le posizioni di equilibrio del sistema materiale sono due per θ , con x_A dato dalla legge di Coulomb-Morin per la statica:

$$\theta_1 = \pi/2$$
 e - $f_s L \le x_{A1} \le f_s L$,

$$\theta_2 = 3\pi/2$$
 e $-2f_sL \le x_{A2} \le 2f_sL$.

iv) Per calcolare le reazioni vincolari agenti sul sistema in una posizione di equilibrio scelgo dunque la posizione $\theta = \pi/2$ e $x_A = 0$, allora

$$A_A(\pi/2,0) = 0$$
, $\phi_{A2}(\pi/2,0) = 2hL$, $\phi_{A3}(\pi/2,0) = 0$, $\phi_{B3}(0) = 0$;

se il vincolo rotazionale è realizzato con un momento: $\Psi(\pi/2, 0) = 0$.

Università degli Studi "Mediterranea" di Reggio Calabria Facoltà d'Ingegneria – Meccanica Razionale Anno Accademico 2007/2008 – Appello del 24/3/2009

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica.

Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo.

L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

Un sistema materiale è costituito da una lamina quadrata omogenea OABC di massa 2m e lato L, vincolata a ruotare col lato OA intorno all'asse verticale liscio Oy, e da un punto materiale P di massa m vincolato a muoversi con attrito su una circonferenza di centro O e raggio L, giacente nel piano verticale Oxv. Sul sistema agiscono:

- una molla di costante elastica h > 0 collegante il punto P con il vertice libero B della lamina;
- II) un momento $\mathbf{M} = 2hL$ (OC x i), con i versore dell'asse Ox.

Determinare:

COGNOME:

CORSO DI LAUREA:

- la, o le, equazioni pure del moto del sistema materiale; (10 punti)
- ii) le reazioni vincolari agenti sul sistema in P ed A all'istante iniziale quando il punto materiale P si trova in quiete sul semiasse positivo Oy, mentre la lamina è disposta lungo il semiasse positivo Oz con l'estremo B avente velocità $\mathbf{v}_B = \mathbf{u}_0 \mathbf{i}$, $\mathbf{u}_0 > 0$; (4 punti) Posto, quindi, mg/L = h ed fs = $3^{-1/2}$, determinare:

iii) tutte le posizioni di equilibrio del sistema materiale; (7 punti)

NOME:

- {per la soluzione occorrono le formule trigonometriche: tg $(a/2) = [\pm \text{ sen a / } (1+\cos a)] \text{ e cotg } (a/2)$ $= [\pm \operatorname{sen} a / (1-\cos a)]$
 - iv) tutte le reazioni vincolari agenti sul sistema in una posizione di equilibrio a scelta. (4 punti)

	Quesiti a rispos	sta chiusa del valore di	due punti ciascuno	
punto medio O sull'asta è dunq	all'asse Oy stessa con ue riducibile a:	ormemente attorno all'as un inclinazione fissa di	π/4. Il sistema di forze a	assifughe agenti
i) zero	ii) un vettore applic	cato iii) <u>una coppi</u>	<u>a</u> iv) un vettore e ur	ıa coppia.
		rsi in un piano con un es reazioni vincolari necessa iii) quattro		
		ghezza L, dire quanti as allineato all'asta, posto a iii) due		
momento della	corpo rigido con punto quantità di moto è data teorema di Koenig		G , la formula ottimale jiii) $\underline{\sigma_{C}\omega}$ iv) CG	
Ai sensi del D	Lgs. 30/06/2003. n. 196. si	i autorizza la pubblicazione or	nline in chiaro dell'esito dell	a prova.

FIRMA:

NUMERO DI MATRICOLA:

Università degli Studi "**Mediterranea**" di Reggio Calabria Facoltà d'Ingegneria – **Meccanica Razionale** Anno Accademico 2007/2008 – Appello del 24/03/2009

SOLUZIONI

i) Vi sono due equazioni pure relative ai due parametri lagrangiani: l'angolo θ che il piano della lamina forma con il piano Oyz, e l'angolo α che il vettore OP forma con l'asse Ox, ambedue in verso antiorario.

Una è la seconda legge di Newton per il punto P proiettata lungo la tangente alla circonferenza in P:

$$mL d^2\alpha/dt^2 = -mgcos\alpha - hLsenθsenα + hLcosα + A$$
,

dove l'attrito A è dato dalla legge di Coulomb-Morin per la dinamica:

$$\begin{split} A = -f_d \{ [mL \left(d\alpha/dt \right)^2 - mg \; sen\alpha + hLsen\theta cos\alpha + hLsen\alpha - hL \;]^2 + \\ + [-hLcos\theta]^2 \}^{1/2} \left(segno \; di \; v_P \right). \end{split}$$

La seconda equazione pura è il Teorema del momento angolare assiale di asse Oy per la lamina:

$$2/3 \text{ mL}^2 \text{ d}^2\theta/\text{dt}^2 = \text{hL}^2\cos\theta\cos\alpha + 2\text{hL}^2\cos\theta.$$

ii) Le reazioni vincolari agenti sul sistema all'istante iniziale sono:

$$\begin{split} & \varphi_{Pn}(0) = -mg, \;\; \varphi_{Pb}(0) = -\; hL_{,A}(0) = 0, \; \varphi_{A1}(0) = 3/2 \; hL, \; , \; \varphi_{A3}(0) = hL - mg - \frac{1}{2} \; m \; u_0^2/L \\ & (\varphi_{O1}(0) = 3hL/2 \; , \; \varphi_{O2}(0) = 2mg, \; \varphi_{O3}(0) = mg - m \; u_0^2/(2L). \end{split}$$

iii) Le posizioni di equilibrio del sistema materiale sono due per θ , con α dato dalla legge di Coulomb-Morin per la statica facendo uso delle formule di bisezione tg $\alpha/2 = ^{+/-}$ sen $\alpha/(1 + \cos\alpha)$ e ctg $\alpha/2 = ^{+/-}$ sen $\alpha/(1 - \cos\alpha)$:

$$\theta_1 = \pi/2$$
 $e - 2\pi/3 \le \alpha \le 2\pi/3$,

$$\theta_2 = 3\pi/2$$
 e $-\pi/3 < \alpha < \pi/3$.

iv) Per calcolare le reazioni vincolari agenti sul sistema in una posizione di equilibrio scelgo dunque la posizione $\theta = \pi/2$ e $\alpha = 0$:

$$\phi_{Pn} = \phi_{Pb} = 0$$
, $A(0) = 0$, $\phi_{A1} = -2hL$, $\phi_{A3} = 0$, $\phi_{O1} = -3hL/2$, $\phi_{O2} = 3hL$, $\phi_{O3} = 0$.

Università degli Studi "Mediterranea" di Reggio Calabria Facoltà d'Ingegneria - Meccanica Razionale Anno Accademico 2007/2008 – Appello del 07/04/2009

La prova consta di 4 Quesiti a risposta chiusa e 4 Quesiti a risposta aperta; la durata della prova è di 2 ore e 30 minuti. Non è permesso consultare testi od appunti, al di fuori del manabile di Matematica. Per i quesiti a risposta chiusa, la risposta a ciascuno di essi va scelta esclusivamente tra quelle già date nel testo, con una X sul numeretto relativo. Una sola è la risposta corretta; qualora sia data più di una risposta allo stesso quesito, nessuna sarà considerata valida. Per i quesiti a risposta aperta, il cui punto i) è obbligatorio, lo studente dovrà ricavare ed indicare la risposta nei due fogli a quadretti allegati. I punteggi per ciascun quesito sono dichiarati sul testo. L'esito finale della prova è determinato dalla somma algebrica dei punteggi parziali.

Quesiti a risposta aperta

In un piano verticale Oxy, un sistema materiale è costituito da un'asta omogenea AB di massa m e lunghezza L, vincolata a traslare con il vertice A sull'asse orizzontale Ox. Una molla di costante elastica h > 0 collega l'origine O al vertice A, mentre una molla di costante elastica k > 0 collega il vertice B al punto mobile B' proiezione di B sull'asse Ox. Sul sistema, inoltre, agiscono:

- una forza $\mathbf{F} = \beta \mathbf{k}$ applicata nel baricentro G, con $\beta > 0$ e \mathbf{k} versore del terzo asse;
- II) un momento $\mathbf{M} = (\mathbf{mg} \times \mathbf{AB})$, con \mathbf{g} vettore accelerazione di gravità.

Determinare:					
ii) le reazioni vino		ema all'istante ini	ziale quando l'	asta è allineata al semia	
positivo Ox con A situ	ato a distanza L da ($0, v_A(0) = u_0 i e v$	$\mathbf{v}_{\mathrm{B}}(0) = \mathbf{u}_0 \mathbf{i} + \mathbf{v}_0$	\mathbf{j} , $\mathbf{u}_0 > 0$ e $\mathbf{v}_0 < 0$; (4 pur	nti)
Posto, quindi, mg/L	L = h = k, determinant	re:			
	ni di equilibrio del si colari agenti sul siste			stabilità; (7 punti) stabile a scelta. (4 punt	ti)
	Quesiti a risposta o	chiusa del valore	di due punti ci	iascuno	
1. Dato un sistema sistema sono dati da:	ı di vettori applicat	ti riducibile ad ur	na sola coppia	, i vettori caratteristici	del
i) $\mathbf{R} = 0$, $\mathbf{M}_{\rm O} = 0$;	ii) $\underline{\mathbf{R}} = 0, \underline{\mathbf{M}}_{\underline{0}} \neq 0$	$\mathbf{\underline{0}}$; iii) $\mathbf{R} \neq 0$, M	$\mathbf{I}_{\mathrm{O}} = 0;$	iv) $\mathbf{R} \neq 0$, $\mathbf{M}_{\mathrm{O}} \neq 0$.	
2. Data una circontrispetto ad un punto de		-		sono anche assi princi di un suo diametro:	pali
i) nessuno ii)	uno uno	iii) due		iv) tre	
prima è saldato ad un i	un estremo dell'altra	_	_	a L, in cui un estremo d ede:	ella
1) 41441,	1	-) <u>55-</u> ;	11, 0000		
4. Data una lamina equazioni pure del mo	to (ECD = Equazion	e Cardinale della I	Dinamica):	fisso C, individuare la	o le
i) la 1 ^a ECD proiett	ata lungo Ox;	ii) la	1 ^a ECD proiet	tata lungo i tre assi;	
iii) la 2 ^a ECD con p	olo in C proiettata lu				
Ai sensi del D. Lgs. 30/	/06/2003, n. 196, si autor	rizza la pubblicazione	online in chiaro d	ell'esito della prova.	
COGNOME:	NOME:		NUMERO DI	MATRICOLA:	
CORSO DI LAUREA:			FIRMA:		

Università degli Studi "**Mediterranea**" di Reggio Calabria Facoltà d'Ingegneria – **Meccanica Razionale** Anno Accademico 2007/2008 – Appello del 7/04/2009

SOLUZIONI DEI QUESITI A RISPOSTA APERTA DEL 07/04/2009

i) Vi sono due equazioni pure relative ai due parametri lagrangiani: l'angolo θ che l'asta forma con l'asse Ox preso in verso antiorario, e la coordinata x_A del vertice A dell'asta che trasla lungo l'asse Ox. Una è la prima equazione cardinale della dinamica proiettata lungo l'asse Ox:

$$-1/2 \text{ mL} \left[\frac{d^2\theta}{dt^2} \sin\theta + \left(\frac{d\theta}{dt} \right)^2 \cos\theta \right] + \frac{d^2x_A}{dt^2} = -hx_A$$

La seconda equazione pura è il Teorema del momento angolare assiale di asse Az per l'asta:

$$1/3 \text{ mL}^2 \text{ d}^2\theta/\text{dt}^2 - 1/2 \text{ mL d}^2x_A/\text{dt}^2 \text{ sen}\theta = 1/2 \text{ mgLcos}\theta - \text{kL}^2 \text{ sen}\theta \cos\theta.$$

ii) Le reazioni vincolari agenti sul sistema all'istante iniziale sono:

$$\phi_{A2}(0) = 7/4 \text{ mg}, \ \phi_{A3}(0) = -\beta/2 \ \phi_{B3}(0) = -\beta/2$$

(nel caso in cui si realizzi il vincolo di rotazione per l'asta con una coppia ψ_B ,

$$\phi_{A3}(0) = -\beta, \ \psi_{B}(0) = \beta L/2)$$

iii) Poiché il sistema di forze agenti è conservativo, applicando il teorema di Dirichlet si trova una posizione di equilibrio per x_A e quattro per θ :

$$x_A = 0$$
,
con $\theta_1 = \pi/2$, $\theta_2 = 3\pi/2 \rightarrow$ equilibrio instabile,
 $\theta_3 = \pi/6$, $\theta_4 = 5\pi/6 \rightarrow$ equilibrio stabile.

iv) Per calcolare le reazioni vincolari agenti sul sistema in una posizione di equilibrio stabile scelgo dunque la posizione $x_{A3} = 0$ e $\theta_3 = \pi/6$:

$$\phi_{A2}(0) = 3kL/2$$
, $\phi_{A3}(0) = -\beta/2$, $\phi_{B3}(0) = -\beta/2$

(nel caso in cui si realizzi il vincolo di rotazione per l'asta con una coppia,

$$\phi_{A3}(0) = -\beta, \psi_{B}(0) = \beta L/2$$