Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

METODI E MODELLI MATEMATICI PER L'INGEGNERIA

Corso Ingegneria Civile
Curriculum INFRASTRUTTURE E SISTEMI DI TRASPORTO
Orientamento Orientamento unico
Anno Accademico 2019/2020
Crediti 6
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Docente PASQUALE CANDITO
Obiettivi Il corso si propone di presentare allo Studente i principali metodi elementari per lo studio delle equazioni differenziali alle derivate parziali, strettamente legati alle tecniche di approssimazione numerica e utili per risolvere quantitativamente problemi di interesse ingegneristico, quali ad esempio, il metodo di Galerkin-elementi finiti per problemi di tipo ellittico e il metodo delle differenze finite per equazioni paraboliche ed iperboliche. L'obiettivo generale del corso è quello di introdurre tali tematiche partendo da semplici problemi derivanti dalle scienze applicate e seguendo un medesimo schema ricorrente: analisi matematica del problema, approssimazione numerica, analisi dei risultati.
Programma Introduzione ai metodi variazionali per lo studio delle equazioni differenziali: motivazioni, esempi. Necessità della risoluzione numerica. Spazi metrici e spazi normati. Spazi funzionali: principali esempi Concetti fondamentali. Disuguaglianze di Young, Hölder e Minkowski. Successioni in uno spazio metrico. Funzioni continue. Spazi metrici completi. Spazi di Banach.Spazi di Hilbert. Regola del parallelogramma. Disuguaglianza di Cauchy-Schwarz. Cenni alla teoria della misura e dell’integrazione secondo Lebesgue. Derivata debole.Spazi di Sobolev. Disuguaglianza di Poincaré. Disuguaglianze di traccia. (I-II CFU)
Operatori lineari. Spazi duali. Forme bilineari, problemi variazionali astratti. Teorema di Lax-Milgram. Forme bilineari simmetriche. Approssimazione e metodo di Galerkin-elementi finiti: esistenza, unicità e stabilità della soluzione discreta, convergenza. Lemma di Céa. Equazioni ellittiche. Soluzioni classiche, forti e deboli (o variazionali). Formulazione variazionale di un problema di diffusione, trasporto e reazione con condizioni al bordo di Dirichlet, di Neumann, miste e di Robin. Equazioni generali in forma di divergenza. (III-IV CFU).
Equazioni paraboliche. Formulazione debole e sua approssimazione. Stime a priori. Analisi del problema semi-discreto. Il metodo delle differenze finite per equazioni iperboliche. Analisi dei metodi alle differenze finite. Equazioni equivalenti e analisi dell’errore (V-VI CFU).
Testi docente H. Brezis, Analisi Funczionale. Teoria e applicazioni, Liguori Editore 2002.
P. Cannarsa, T. D'Aprile, Introduzione alla teoria della misura e all’analisi funzionale, Springer-Verlag, Milano 2008.
S. Salsa, Equazioni a derivate parziali (Metodi, modelli e applicazioni), Springer.
A. Quarteroni, Modellistica Numerica per Problemi Differenziali. Springer, 2008.
V. Romano, Metodi matematici per i corsi di ingegneria, Città Studi Edizioni (2018)
L. Formaggia, F. Saleri, A. Veneziani, Applicazioni ed esercizi di modellistica numerica per problemi differenziali. Springer Verlag (collana Unitext), 2005.
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento

Elenco dei rievimenti:

Descrizione Avviso
Ricevimenti di: Pasquale Candito
Si avvisano gli studenti interessati che il ricevimento del prof. Candito, per il I semestre dell'Anno Accademico 2020/2021, si svolgerà attraverso la piattaforma Microsoft Teams, di norma tutti i mercoledì alle ore 13:00.

Per poter partecipare, gli studenti si dovranno prenotare attraverso la piattaforma Microsoft Teams oppure inviando una e-mail all'indirizzo pasquale.candito@unirc.it
Ricevimenti di: Pasquale Candito
Il ricevimento del Prof. Candito, nel periodo 24/02-25/07-2020 si terrà ogni martedì dalle ore 13.00 alle ore 14.00. Eventuali ricevimenti devono essere prenotati, da parte degli studenti, all'indirizzo pasquale.candito@unirc.it
Ricevimenti di: Pasquale Candito
Il ricevimento studenti del prof. Candito, nel periodo 30 settembre - 20 dicembre 2019, si svolgerà, di norma,

ogni lunedì e mercoledì, dalle 13.00 alle 14.00, presso il suo studio (II lotto, ex Facoltà di Ingegneria, III piano), oppure in aula E1.

Per eventuali, ulteriori richieste contattare il prof. Candito all'indirizzo pasquale.candito@unirc.it
Ricevimenti di: Pasquale Candito
Il ricevimento del Prof. Candito, nel periodo 30/10-31/12-2020 si svolgerà attraverso la piattaforma Microsoft Team ogni martedì dalle ore 13.30 alle ore 14.30. Gli studenti interessati devono registrarsi in uno dei Team associati
alle discipline di cui il prof. Prof. Candito è titolare.
Eventuali ricevimenti devono essere prenotati, da parte degli studenti, inviando un messaggio attraverso la chat di Microsoft Teams.
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1697501

Fax +39 0965.1697550

Indirizzo e-mail


Biblioteca

Tel +39 0965.1697181/2

Tel +39 0965.1696182/3

Indirizzo e-mail

Ufficio didattica

Tel +39 0965.1697520

Fax +39 0965.1697550

Indirizzo e-mail


Ufficio Ricerca

Tel +39 0965.1697530

Fax +39 0965.1697550

Indirizzo e-mail

Segreteria amministrativa

Tel +39 0965.1697510

Fax +39 0965.1697550

Indirizzo e-mail


Orientamento

Indirizzo e-mail

Laboratorio Multimediale

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram