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Nonlinear ocean wave groups with high waves
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ABSTRACT: Mechanics of three-dimensional wave groups, in a Gaussian sea, may be analyzed with 
the Quasi-Determinism (QD) theory, introduced by Boccotti in the eighties. This theory shows that, to 
the first order in a Stokes expansion, the structure of high waves is proportional to the autocovariance 
function. Formal derivation of QD theory up to the second-order was derived recently, for the mechanics 
of nonlinear ocean waves. This paper summarizes some results on linear and nonlinear wave groups, by 
considering effects of wave spectrum (variation of either frequency or directional spectra, for two- and 
three-dimensional waves respectively, including bimodal spectra) and of finite water depth. Finally, some 
results on mechanics of wave groups are discussed, by including diffracted fields: random wave groups 
interacting with a large vertical cylinder, with a horizontal submerged cylinder or a vertical wall, including 
nonlinear effects.

the crest-to-trough wave height, proved that when 
a very large wave with height H occurs at point 
( , )x y,o oy,  at time ( )o , the linear free surface dis-
placement (η1ηη ) at any point ( , ,)y Yo o, yy, y, y  at 
time ( )o , is given by:
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The theory was verified with some small scale field 
experiments by Boccotti (1993, see also 2000 for a 
complete review). A field verification was also pro-
posed by Phillips et al. (1993a,b).

The modeling of nonlinear random ocean waves 
was introduced by Longuet-Higgins (1963). Sharma & 
Dean (1979) proposed the second-order solution for 
ocean waves on an arbitrary water depth.

Second-order analysis of high wave groups was 
proposed in 2005 for long-crested waves. The solu-
tion up to the second order of the first formulation 
of the quasi determinism theory was proposed by 
Fedele & Arena (2005), with an analytical solution 
of the second-order crest height distribution; the 
mechanics of wave groups has been then analyzed 
in Arena and Fedele (2005). The more general 
solution for the second-order QD theory, in both 
the formulations, was then given by Arena (2005): 
in that paper long-crested waves in intermedi-
ate water depth were considered. The space-time 
evolution of nonlinear waves was investigated by 
Petrova, et al. (2010), with a validation proposed 
starting from data of the Draupner wave generated 
in a wave channel (Clauss et al., 2008).

1 INTRODUCTION

To the first order in a Stokes expansion, the sea 
waves may be modelled by theory of  wind- generated 
waves (Longuet-Higgins, 1963; Phillips, 1967) and 
free surface displacement and velocity potential 
represent a Gaussian process in time domain, at 
any fixed point.

The Quasi Determinism (QD) theory shows that 
in a Gaussian sea, if  a very high wave occurs, the 
wave profile is a function of the autocovariance of 
the free surface displacement. The QD theory was 
developed in the eighties, in two formulations. The 
former (Boccotti, 1981, 1982, 1983, 2000) dealing 
with the crest height, proved that when at sea a 
very high crest HC occurs at point ( , )x y,o oy,  at time 
(to), the space-time profile of linear free surface 
displacement (η1ηη ), with probability approaching 1, 
will be given by:
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The free surface displacement when a high crest 
occurs was also analyzed by Lindgren (1970, 1972) 
and by Tromans et al. (1991), who renamed the 
QD theory as NewWave model.

The latter formulation of the QD theory 
(Boccotti, 1989, 1993, 1997, 2000), dealing with 
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Alternative approaches for nonlinear wave 
groups were proposed by Jensen (2005), based on 
the edgeworth form of Gram-Charlier series, and 
by Fedele and Tayfun (2009).

The generalization to three-dimensional waves in 
intermediate water was proposed recently (Arena 
et al, 2008), to analyze the group mechanics when 
a high wave occurs.

Effects of wave spectrum on the nonlinear prop-
erties of high random waves in sea states were inves-
tigated by Arena and Guedes Soares (2009a,b), by 
considering bimodal spectra.

Finally, the structure of wave groups in a non 
homogeneous wave field was given by Boccotti 
(1995, 1996, 2000). More recently, Romolo & 
Arena (2008, 2010, see also Romolo, 2006) investi-
gated nonlinear standing waves, and Arena (2006) 
proposed the comparison between analytical pre-
dictions and experimental data of wave groups 
interacting with a submerged horizontal cylinder. 
Some results are summarized in this paper and 
the solution is proposed for random wave groups 
interacting with a large vertical cylinder.

2 QUASI-DETERMINISM THEORY FOR 
A GAUSSIAN SEA: THE UNDISTURBED 
WAVE FIELD

Here linear waves in a homogeneous field are con-
sidered. An example is represented by random 
waves in an undisturbed field. In this case, start-
ing from linear theory of wind generated waves, it 
is possible to demonstrate that both free surface 
displacement and velocity potential represent 
Gaussian processes in time domain. Then, the QD 
theory may be applied in both formulations.

The QD theory, in its second formulation, was 
derived by starting from the probability density 
function of the surface displacement at point 
( , )y Yo o, yy, y, y , at time t To , given the condition

η ( , , ) ( )*H) y, t T Ho oy o o) , (η x o o, t, (η ,H x y, t(η x , t = −
1
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2  (4)

to being an arbitrary time instant, ( , )x y,o oyy,  an arbi-
trary point, H the crest-to-trough wave height 
and T∗ the abscissa of the absolute minimum of 
the autocovariance function (2). Boccotti (1989, 
1997, 2000) proved that, as H /σ → ∞, condition 
(4) becomes both sufficient and necessary for the 
occurrence of a wave of given height H. As a con-
sequence, as H /σ → ∞, the linear free surface 
displacement tends asymptotically to the deter-
ministic function (3).

In words we have that “if  a wave with a given 
height H occurs at a fixed point ( , )x y,o oy,  and H is 

very large with respect to the mean wave height 
at this point, we may expect the water surface 
near ( , )x y,o oyy,  to be very close to thedeterministic 
form (3)”.

The QD theory gives also the mechanics of the 
wave group: the linear velocity potential, when the 
large wave of height H occurs, is given by
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with X, Y, z, T the independent variables.
If  we consider the first formulation of the QD 

theory, the velocity potential when a crest with 
height HC occurs is given by:

φ1φφ
0

( , , , )
( , , , )

( ,0 , )0
y Y z t, T

Y, z T,
Ho o, y o C

0
)

(0 )0
HH, y, y =)+ T )T

Φ
Ψ

,

 (7)

with the linear free surface displacement given by 
Eq. (1). Equations (1) and (7) may be rewritten, 
as a function of the frequency or directional spec-
trum, as:

i) three-dimensional (short-crested) wave groups 
when a high crest occurs
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with S( , )θ,, )) the directional spectrum;

ii) two-dimensional (long-crested) wave groups 
when a high crest occurs
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with E( )))  the frequency spectrum.
Note that for three dimensional waves the vari-

ance of the free surface displacement is given by

σ ω
π
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S dθ)ω θ 3ωdθ D waves  (12)

which, for two-dimensional waves, is reduced to

σ ω2σσ
0

∞

∫ E( )ω d Dω 2 waves  (13)

Furthermore, the wave number k is related to 
the wave frequency ω by means of the linear dis-
persion rule:

k kd gta ( ) 2 . (14)

Finally, it should be noted that the QD theory is 
able to describe the space time evolution of a wave 
group when a high wave occurs, to the first order 
in a Stokes expansion. The velocity potential, given 
by either eq. (9) or eq. (11), for 3D or 2D waves 
respectively, gives also the wave kinematics. Then, 
if  a slender cylinder is considered at sea, the Mori-
son force given by high wave groups may be calcu-
lated by means of velocity potential of wave group. 
Examples were shown by Boccotti (2000), as well 
as by Arena & Romolo (2005), and by Arena & 
Nava (2008), where the comparison with the lin-
earization approaches was proposed, for applica-
tions in offshore engineering.

3 QUASI-DETERMINISM THEORY 
FOR LINEAR WAVE DIFFRACTION

The quasi-determinism theory is valid whichever 
the boundary condition is. Then, it may be applied 
for a diffracted wave field too. Some examples were 
given by Boccotti (2000): waves interacting with 
a vertical wall (linear standing waves), or waves 
interacting with a semi-infinite wall. Other solu-
tions were given by Arena (2006) for waves inter-
acting with a horizontal submerged cylinder (see 
also Ogilvie, 1963 and Arena, 1999) and by Arena 
(1996) and Pavone & Arena (2004) for waves 
 interacting with a single large vertical cylinder or 
an array of cylinders.

All these solutions were given for linear random 
waves: the wave field is non-homogeneous (the var-
iance of free surface displacement changing from a 
point to each other), but both free surface displace-
ment and velocity potential, at any fixed point, 
represent Gaussian processes in time domain. Here 
an example is shown for the random waves-large 
cylinder interaction. It is shown as the QD theory 
may be applied to the random wave force process 
too (as well as to the overturning moment).

3.1 Random waves interacting with a large 
vertical cylinder

The diffraction of random waves interacting with a 
large vertical cylinder may be solved starting from 
the solution of MacCamy and Fuchs (1954; see 
also Sumer and Fredose, 1987) for periodic waves, 
by using the general theory of the wind generated 
waves. Both the random free surface displacement 
and the random wave force represent, to the first 
order in a Stokes expansion, a Gaussian  process. 
Then, the Quasi-Determinism theory may be 
applied: it is possible to calculate the free surface 
displacement when a high wave occurs on, or close 
to, the cylinder, as well as the force produced by 
this high wave.

3.1.1 Incident wave field
Free surface displacement, for the incident random 
wave field, may be written in a complex form as
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where the wave number ki is related to the angular 
frequency ωi by means of the linear dispersion rule 
(14), θi is the angle between the direction of propa-
gation and the y-axis, Jm(x) is the Bessel function 
of first kind, of integer order m and

βo mβ mi mm= ≥1 2m = 1βmm fo

The reference frame is shown in Figure 1.

3.1.2 Diffracted wave field
Random free surface displacement, at any point 
(r,α), on or close to the vertical cylinder, may be 
written as (Arena, 1996):
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Note that with Jm(x) and Ym(x) are the  Bessel 
function of first and second kind respectively. The 
Hankel function of the first kind is defined as 

J Ym mH J mYY( )( )xx ( )x( ) ( )x≡ +JJJ )x i .
The resulting wave field is then no homogene-

ous in space. The variance of the free surface dis-
placement, at point (r, α), is
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or, as a function of the directional spectrum
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The total random wave force on the cylinder, 
is obtained by integration of the wave pressure 
ΔpΔ ( )R z t, ; ,α ;;  on the cylinder surface, as
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Solving the integral, the total random wave force 
is found, as a time function:
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where
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3.1.3 Second formulation of quasi-determinism 
theory for the interaction between random 
waves and a large vertical cylinder

Let us consider a large wave with height H occur-
ring at point (ro, αo), with the crest of this high 
wave at time to. As H/σ tends to ∞, the probability 
tends to 1 that random free surface displacement at 
point (ro orr + Δ Δ+rr αo Δ+o ) at time t To  is given by:
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or, as a function of the directional spectrum:

Figure 1. Reference frame for the analytical solution of 
random waves interacting with a large vertical cylinder. 
The plane (X,Y) is horizontal; the upward vertical axis z 
has origin at the mean water level.
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The wave force (22) represents a Gaussian proc-
ess in time domain. Then, when the large wave 
occurs on the cylinder, or close to it, the QD theory 
enables to predict the wave force produced by this 
high wave. In detail, if  at point (ro, αo), at time to 
a large wave with height H occurs, the total wave 
force on the cylinder at time t To  will be:
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and, as a function of the directional spectrum:
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4 SECOND-ORDER QUASI-
DETERMINISM THEORY FOR WAVE 
GROUPS IN AN UNDISTURBED FIELD

The solution for the second-order QD theory (Arena, 
2005; Fedele & Arena, 2005; Arena et al., 2008) was 
given by following the perturbation method. The 
total second-order free surface displacement η  and 
velocity potential φ  are given respectively by
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where the second-order contribution is:

i) three-dimensional (short-crested) wave groups 
when a high crest occurs
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The expressions of interaction kernels AijlmA±
 and 

BijlmBB±  (Arena et al. 2008; see also Sharma and Dean, 
1979) are:
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θ j,ii ω θl ml ml
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 (37)

D
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+
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±
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r
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2

2
2
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∓
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2
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 (38)
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with

r
g

k k di irr i
i ik kk k( )i )ii

ωii= =
2ωω

 (39)

k

k k k k

ijlmkk i j l m

i lk k i lk k j m

±

= kkk ± k klk k

( ,i , l )

cos( ).

θ j,ii ω θl ml ml

θ θj m−j
2 2k 2  (40)

Note that in the nonlinear velocity potential a 
term proportional to T has been considered, which 
derives from the Whitham (1974) discussion on 
the second-order problem of Stokes waves in finite 
depth (see also Dalzell, 1999; Boccotti 2000; Arena 
et al. 2008).

i) two-dimensional (long-crested) wave groups when 
a high crest occurs
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+
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.
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 (42)

where

ϕ ω ω( ,ϕ ωϕ )j j,ω , ) jωY , k Yj T≡ −k Yj  (43)

The interaction kernels AijAA± and BijBB± are (see 
Arena, 2005):

A
B k k

nmA nmBB n mk k n m

n m

n m
±

±
=

±k kn mkk k
+ +

ρ ρn m

ρ ρn m

ρ ρn m+n  (44)

B k k

k k

nmB n m m n n n mk

nm m n m n

± (( ) (( )⎡
⎣{{ ± (

− ))⎤⎦ ±n+ (( ))
ρn ρknkk nρm − ρn

nρm )⎤⎦⎤⎤ + ρk knkk m nkρm ) ρ

2 2ρρ 2

2ρρ
2

2 ∓ mmρ

n m nm nmk knm n d

( )}
±( ) − ( )⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

± ±k(ρ ρn m±
2

ta

 (45)

k knmkk n m
± k k| kn mk k±knk  (46)

ρn nρρ n nωk k d gnωnω 2ωω . (47)

For deep water definitions of AijA± and BijBB± are 
rewritten in the following simpler form (see Fedele 
and Arena, 2005):

A A k knmA n m nmA n mk k− +k k A =A| |k kn mkk kk k− k ;  (48)

B B
k k k k

k k
nmBB nmBB

n mk kk n mk kk

n mk kk n m

+ −B =B
( )

( ) −
0

4
2

2
;

| |k kn mk kkk
 (49)

5 WAVE GROUPS WHEN A HIGH 
CREST-TO-TROUGH WAVE OCCURS: 
NONLINEAR SOLUTION FOR THE 
SECOND FORMULATION OF THE 
QD THEORY

The second formulation of  the QD theory 
(Boccotti, 2000) shows what happens when a 
high crest-to-trough wave occurs at some fixed 
point and time. In this case the linear free sur-
face displacement will tend to the deterministic 
profile (3) and the linear velocity potential to 
the eq. (5).

The nonlinear analysis was proposed by 
Arena (2005). If  nonlinear free surface displace-
ment is given by eq. (30), for long-crested waves, 
the linear and the second order contribution are 
written as:

η

ϕ ω ω

1ηη
02

( , ) c
02

os

cos (ϕ , , ) *

y t T
H

cos

Y T Tωω

o ot [ ]ϕ ω( ,ϕ ω , )Yϕ ( ,ϕ ωϕ{
+ω(ϕϕ , , )Y T,− cos ⎡⎣ ⎤⎦⎤⎤

∞
∫00

ωω

dωωω

ω ω

⎫
⎬
⎫⎫

⎭
⎬⎬ {

⋅ ( )⎡
⎣
⎡⎡ ⎤

⎦
⎫
⎬
⎫⎫

⎭
⎬⎬

∞
∫ E

T

( )ω

d

0∫∫
1 c− os *))

 

(50)
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6 SECOND-ORDER QUASI-
DETERMINISM THEORY FOR 
WAVE GROUPS IN REFLECTION

The QD theory may be extended to include  nonlinear 
effects for wave diffraction too. In this case, we 
should know the second-order solution for the 
random wave field in the presence of the body. An 
example is given by the recent solution for  nonlinear 
reflection of high wave groups interacting with a 
vertical wall: it gives the second order QD  solution 
for random standing waves. Then, if a large wave 
occurs at any point on the wall, or in front of it, we 
may determine at any point the free surface displace-
ment and the velocity potential. As a consequence, 
the nonlinear pressure on the wall produced by the 
high wave group is known (see Romolo and Arena 
2010 and Romolo, 2006 for long crested waves.

In detail, when an extremely high individual 
crest elevation HC occurs at a fixed point (x0, y0) on 
or close to the wall, at a time instant t0 in a random 
wind-generated sea state, which is assumed to be a 
stationary and Gaussian process of time, the lin-
ear ‘Quasi-Determinism’ theory predicts, with very 
high probability, the expected configuration of the 
wave field in time domain, before and after t0, and 
in space domain, in a area surrounding (x0, y0). The 
free surface displacement and the velocity potential 
will be given by equations (1) and (7) respectively.

In this case, the covariance functions (2) and 
(6) will be referred to the linear random waves in 
reflection. If  we define HCHH

RC  the high crest occur-
ring at (x0, y0), the deterministic linear free surface 
displacement is

η

σ
θ θ ω

θω

π
1 0 0 0

2σσ
0

2

0

R

R

y Y0

H
S kθ Tθ ωωCR

HH

( ,0x X0 , )0t T0

( ,ωωω )θθ ( skX skX i )

co

y0X

θS θω θ kX= R ∫∫
∞

 
2

s(ss ) s ]k y d) ]cos )y k( d0 0s ) [ y(cos ) s)cos ]]))cos[k()cos[ ()cos[k( θ ω d

 

(52)

and the velocity potential
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 (53)

where σ σ2 2σ σσ σ 0( )0y  is 0.25 times the variance of 
the surface displacement of the random stationary 
and Gaussian wind-generated wave field in reflec-
tion as a whole, where the exceptionally high wave 
crest is realised; this is

σ θ θ θ ω

θω

π
2σσ 0

2
0

0

2

0

( ) ( ,ω )θ )θθ ( c0 )θθy0 )0 S y∫∫∫∫
∞

θ,ω θ θ ) dθ d

 (54)

Note that, from the Bernoulli’s equation, the 
linear wave pressure acting on the wall may be cal-
culated as

p g
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 (55)

The second-order solution for the quasi deter-
minism of random standing waves was derived 
recently for 2D and 3D waves (Romolo and Arena, 
2010). It shows that second order contributions are 
given by

η ω ω

θθωω

ππ

2ηη 0 0
2

1 1ωω
0

2

0

2

00

2ωω

2θθ1θθ2ωω1ωω

R R
t T Ht T SωωωCR

( ,0x )) / (σ8 S )1θ )SSθ1θθ (t ∫∫∫∫
∞∞

4σ , ),, ( )cos( )

cos( )( , , ) (cos( ) ,

θ ϕ)cos(

α αω, θ θ ω ω θ

2 1 2)cos(θ ϕθ ϕ)cos( ϕ

1 2,ωω, 1 2,θ θθ θ, 1 2,ω ωω ω,
1

cos(( ) cos(αθ θ⋅ +−{{A A
1 211θθθθ

2 11 2 1 2

1 2

, )2 ( 1 1 )cos(

cos( )
2

1 2)22 ( 11
cos( ) ω θ22 111 θ22

α11

α α1 2

− +cos( )α λ λ2 )2 )α22 λ)α λ

⋅ +cos(α1

λλλ {+ Aλλλ

+++ +A }⋅ −+
1 2( , ) ( (−)}d)}cos( d d d1 2− λ λ+1 22+ d d

1 2,ω, 1 2,θ θθ ,
2

1 2 2 1 2 1 d  d ΞΞ / )

(56)
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where the interaction kernels A( , , )ω, θ θ1 2,ωω, 1 2,θ θθ θ, n
∓

AA  and 
C( , , )ω, θ θ1 2,ωω, 1 2,θ θθ θ, n
∓
(  are given by Romolo and Arena 

(2010). The linear pwR1 and the second-order pwR2 
contributions of the wave pressure on a vertical 
wall may be calculated from Equations (53) and 
(57) respectively.

7 APPLICATIONS: LONG-CRESTED 
WAVES IN AN UNDISTURBED FIELD

Figure 2 shows the free surface displacement when 
a high wave occurs: the upper panel is obtained for 
the occurrence of a large crest-to-trough wave with 
height H, with H /σ → ∞ (second formulation of 
QD theory); the lower panel is obtained for the 
occurrence of a large crest with height HC with HC

/σ → ∞ (first QD formulation). The comparison 
is shown between the linear wave groups η1 and 
the total second-order free surface displacements 
η η1 2η ηη + . The waves are long crested, the spectrum 
is the mean JONSWAP (Hasselmann et al, 1973), 
and the water is deep. The nonlinearity produces 
crests higher and sharper and troughs lower and 
flatter. Furthermore, the upper panel shows that 
the crest-to-trough wave height is not modified 
by nonlinearity (Arena, 2005). In detail, if  a large 
wave with height H occurs, from linear theory the 

profile η1 is obtained, with both crest and trough 
amplitude of 0.5H. To the second order, the total 
η η1 2η ηη η+  profile, presents the crest amplitude of 
0.57H and the trough amplitude of 0.43H, so that 
the wave height is not modified.

The structure of high waves when a large crest 
occurs (lower panel) is symmetrical, with respect 
to the time T = 0, because it is proportional to the 
autocovariance function. For unimodal spectra, 
like JONSWAP, Pierson Moskowitz etc., the free 
surface displacement in time domain has a trend 
well described by lower panel of Figure 2. Strong 
modifications may occur for bimodal spectra, as 
shown by Arena & Guedes Soares (2009a, 2009b, 
2010). Some examples are plotted in Figure 3, for 
bimodal spectra described following the Guedes 
Soares model (1984), with values of the sea state 
parameters given in Table 1. If  compared with 
unimodal spectra, in general nonlinear effect may 
be either increased for mixed or wind-wave domi-
nated seas or reduced for swell dominated seas. 
More details are given in the Arena & Guedes 
Soares (2009a,b), where analytical results, numeri-
cal simulations and ocean data were considered.

Figure 4 shows the space-time evolution of a 2D 
wave group: for some fixed time instant the wave 
group is shown in space domain. The group has 
the apex stage at time T = 0.

Figure 2. Let us assume that a wave (crest) with height 
H (HC) occurs at (Y = 0), with /HH σ → ∞: the linear 
wave group η1η , the second-order term η2η  and the total 
second-order free surface displacements η η η= +η1 2η+ηη , for 
the mean JONSWAP spectrum in deep water. Upper 
panel: high wave with height H; lower panel: high crest 
with height HC.

Table 1. Parameter defining the analyzed bimodal 
 spectra of Figure 2 (Arena & Guedes Soares, 2009a). 

Spectrum Hs/Lz HR TR

A—Swell dominated sea 0.028 1.6 3.33

B—Mixed sea 0.067 0.8 1.43

C—Mixed sea 0.047 0.8 2.86

Note: H H HR sH H sH
sw ww

/  and T T TR zT TT T zTT
sw ww

/ .

Figure 3. Let us assume that a crest with height HC 
occurs: the free surface displacement for bimodal spectra 
shown in table 1 (Arena & Guedes Soares, 2009).
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8 APPLICATIONS: SHORT-CRESTED 
WAVES IN AN UNDISTURBED FIELD

Nonlinear wave groups when a high crest occurs at 
sea, in a three-dimensional wave field, may be rep-
resented by means of Equations (8) and (32), for 
linear and second-order contribution respectively. 
Regarding the directional spectrum, the JONSWAP-
Mitsuyasu is considered (Mitsuyasu et al, 1975).

A complete nonlinear analysis, for intermediate 
water depth, was proposed in Arena et al. (2008). 
Here a summary is given. Figure 5 shows the maxi-
mum nonlinear crest height when a linear crest of 
amplitude HCHH max

 occurs in a three-dimensional wave 
field. The comparison with Figure 4 well represents 
the differences between 2D and 3D wave groups.

The maximum nonlinear amplitude increases as 
the water depth is reduced, whichever the spectrum 
is. By considering the bandwidth of the spectrum, it 
is found that in finite water depth the nonlinearity 
increases faster if  a narrow-band model is consid-
ered (see Fig. 6). For finite bandwidth, by compar-
ing short and long-crested waves, it is found that:

i) nonlinearity, in deep water, is slightly greater for 
long-crested waves;

ii) as the water depth is reduced, nonlinearity 
increases slower for long-crested than for short-
crested waves

The conclusion is that for finite bandwidth of 
the spectrum, in intermediate and shallow water, 
the nonlinearity is stronger for three-dimensional 
waves. This conclusion was given in Arena et al. 
(2008) and is in full agreement with Forristall 
(2000), who analyzed data from numerical simula-
tion for 2D and 3D waves, at different water depths. 
Comparison between the Forristall model for the 
crest height distributions in 2D and 3D waves, with 
the theoretical model given starting from the QD 
theory was given in Arena and Ascanelli (2010).

The wave front, along the X axis, is plotted in 
Figure 7, for different values of the np parameter 

Figure 4. Two-dimensional (long-crested) waves: space 
time evolution of a wave group when a high wave occurs 
at a fixed point at T = 0. The water is deep and the domi-
nant wave direction is given by Y-axis.

Figure 5. Three-dimensional (short-crested) waves: 
space time evolution of a wave group when a high wave 
occurs at a fixed point at T = 0. The water is deep and the 
dominant wave direction is given by Y-axis.

Figure 6. Effects of finite water depth for an infinitely 
narrow spectrum, for 2D and 3D waves (data from 
Arena et al., 2008).
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of the Mitsuyasy’s directional spreading function. 
For ocean waves a typical value of np is equal to 20. 
Then, the wave front has width equal to 2 ÷ 2.5 times 
the wavelength in deep water Lp0. The waves tend 
to be long-crested as np increases, with the width of 
the wave front larger and larger.

Finally, it should be noted that QD theory gives 
the mechanics of the random wave groups, either 
to the first order or including nonlinear effects. The 
velocity potential under a very high crest in a three-
dimensional wave field may be calculated by using 
Equations (9) and (32), for linear and second-order 
contribution respectively. The particle velocity and 
the acceleration may be then obtained and applied 
for calculation of the Morison force when a very 
high wave group occurs on a given slender cylinder.

Figure 8 plots the linear and the second order 
horizontal component of the velocity, vy, when a 
very high crest occurs. Velocity vy is plotted under 
the highest crest, as a function of water depth z, for 
deep water condition.

9 APPLICATIONS: DIFFRACTED FIELDS

Quasi-determinism theory may be applied for dif-
fracted fields too (Boccotti, 2000, 2008): it is valid 
whichever the boundary condition is.

An example of theoretical derivation of the 
QD theory for three dimensional waves interact-
ing with a large vertical cylinder has been shown 
in section (3.1).

9.1 Linear diffraction of random wave groups 
by a large vertical cylinder

Figure 9 shows what happens when a high wave 
occurs at point A ≡ (R/Lp;π) on the cylinder: by 
applying Eq. (26) a wave group is obtained, which 
has been propagating along the dominant wave 
direction, coincident with the Y axis. The QD the-
ory may be applied to determine the force process 
too. Figure 10 shows the force on the cylinder when 
the high wave shown in Figure 9 occurs on the cylin-
der. In detail, if  a very large wave occurs at point A, 
fig. 10 shows the free surface displacement at points 
A, B ≡ (R/Lp; π/2) and C ≡ (R/Lp; 0). In the lower 
panel the wave force is shown in time domain.

Then, the QD theory enables us to analyze the 
mechanics of the three-dimensional waves interact-
ing with a vertical cylinder. For example by analyz-
ing how a large wave is generated at a fixed point on 
the cylinder. The wave force produced by this wave 
group, achieved from theoretical solution start-
ing from the directional spectrum of the incident 
waves, gives a full description of the problem.

9.2 Linear diffraction of random wave groups 
by a large horizontal cylinder

The analytical solution for long-crested waves 
interacting with a horizontal submerged cylinder 
was given by Arena (2006), who started from the 
Ogilvie’ solution (1963—see also Arena, 1999) for 
periodic waves. The wave pressure at any point 
on the cylinder, as well as the wave force, may be 
calculated from theoretical frequency spectrum. 
Figure 11 shows the wave pressures calculated on 
a cylinder and the wave forces, calculated from 
a mean JONSWAP spectrum, when a high wave 
occurs over the cylinder (data from Arena, 2006). 
This is a further property of the QD theory: 
because the force is a Gaussian process too, it may 
be applied to calculate the forces on the cylinder 
when a high wave occurs (for details see Boccotti, 
2000; Arena, 2006).

9.3 Nonlinear reflection of random waves

The nonlinear reflection of  random waves has 
been described in Section 6. Here some results 

Figure 7. Second-order wave front (along X axis) when 
a high crest with elevation HC occurs, for different value 
of the np parameter of the Mitsuyasu’s directional spread-
ing function (data from Arena et al, 2008).

Figure 8. Linear and second-order horizontal velocity 
under a very high crest occurring in a 3D random wave field: 
the water is deep and the spectrum is the mean JONSWAP 
with the directional spreading function of Mitsuyasu.
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Figure 9. Let us consider a large crest-to-through wave height occurring at point A (R/Lp0, 180°) at time t0: the 
three-dimensional wave group in which this wave occurs, at different times before and after t0. The water is deep, the 
dominant wave direction is given by Y axis and R = 0.3 Lp. Each plot shows a frame of length of 6 Lp along Y axis and 
of 4 Lp along X axis.
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Figure 11. What happens when a very large height of the pressure fluctuation occurs top of a horizontal submerged 
cylinder. Comparison between experimental data (dotted lines) and analytical predictions (continuous lines), for radius 
of the cylinder ka = 0.19 and depth of the section centre kh = 1.03 (data recorded in NOEL, from Arena, 2006). Fx and 
Fz are the force components on the cylinder. On the left side the location of transducers (1–8) where the wave pressures 
were measured and calculated on a vertical section of the cylinder.

Figure 10. QD theory: let us suppose that a very large wave occurs at point A(R/Lp; π), with R/Lp = 0.3: the free 
 surface displacement at points A, B ≡ (R/Lp; π/2), C ≡ (R/Lp; 0) and the wave force. The wave group in space-time 
domain is shown in Figure 9, with dominant wave direction given by Y axis..

are shown. Figure 12, compares the free surface 
displacements η1ηη  and η η1 2η ηη η+ , calculated either 
for the incident waves or for the wave reflec-
tion, at different values of  the water depth (data 
from Romolo & Arena, 2008). As we can see, 
nonlinearity increases strongly for the standing 
waves; furthermore, it increases by reducing the 
water depth.

Data are achieved by considering a high crest 
that hits the wall, a mean JONSWAP spectrum and 
two values of the water depth d (including deep 
water condition). Note that the nonlinear effects in 
deep water (upper panels of Figure 12) are nearly 

doubled for wave reflection, with respect to waves 
in an undisturbed field.

Figure 13 shows the wave pressure on a verti-
cal wall, when a high wave occurs. Wave pressure 
is calculated at the water depth |z| equal to 0.5 Lp0. 
The nonlinear effects produce some characteristic 
modifications of the wave pressure, with a local 
minimum in the η η1 2η ηη η+  profile occurring at the 
time of the wave crest of η1ηη . The nonlinear profile 
may exhibits a crest with a double peak when a high 
crest occurs. These results are in full agreement with 
experimental evidence for reflection of ocean waves 
(see Boccotti, 2000; Arena and Fedele, 2002).
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Figure 12. Standing waves compared to the incident waves (in an undisturbed field). Left side: free surface 
displacement on the vertical wall when a crest with height HCR occurs on it, for two values of  the water depth. 
Right side: free surface displacement of  the incident waves. Comparison between linear η1ηη , and the total second-
order free surface displacements η η η= +η1 2η+ηη . The mean JONSWAP spectrum is considered. Data from Romolo & 
Arena, 2008.

Figure 13. Wave pressure on a vertical wall, when a high wave occurs on it, calculated for z/d = −0.5. Comparison 
between linear p

wR1
, and the total second-order wave pressures p p pwR wR w= +pwR1 2pwR+  for different values of the water depth 

d/Lp0. The mean JONSWAP spectrum is considered. Data from Romolo & Arena, 2006.
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10  QUASI-DETERMINISM THEORY 
FROM FIELD DATA

Quasi determinism theory may be applied from 
field data. Some examples were given from small 
scale field experiments in the Natural Ocean 
 Engineering Laboratory—NOEL, www.noel.
unirc.it—of the Mediterranea University (Italy). 
In that lab, off  the Reggio Calabria beach, a local 
wind from NNW often generates sea states con-
sisting of pure wind waves with the typical size 
of a laboratory tank (significant wave height 0.20 
m < Hs < 0.80 m, peak period 2.0 s < Tp < 3.6 s), with 
a small tide amplitude (typically within 0.15 m).

Usually, small-scale field experiments in NOEL 
(see, for example, Boccotti, 1995, 1996, 2000; 
 Boccotti et al. 1993; Arena, 2006) the free surface 
displacements η and the fluctuating wave pres-
sures ηph (where ηph ≡ Δp gΔ / ρgg), are recorded by 
means of ultrasonic probles and pressure trans-
ducers respectively. In most cases the sampling 
rate is equal to 10 Hz.

10.1 Wave groups from wave data

Let us consider data of free surface displacement 
recorded from two gauges in points A and B. If  
a very high crest Hc occurs in A, from Eq. (1) we 
have that linear free surface displacements in A is

ηA oη C A AHC( )ot To ( ) / (A )=)T ΨA( )T / 0
,
 (58)

where

ΨA A A( )T ( )t ( )t T >)TηA AAAA( )t  (59)

and that linear free surface displacements in B is

ηB oη C AB AHC( )ot To ( ) / (A )=)T ΨAB ( )T / 0  (60)

where

ΨAB A B( )T ( )t ( )t T >)Tη ηA BBA )t  (61)

Figure 14 shows a 300 s record of free surface 
displacement measured in May 2010 in the NOEL 
laboratory. It is considered as point A. A second 
gauge measured the free surface displacement at 
point B which was placed 1.5 m far from point A 
moving along X axis (which is assumed to be paral-
lel to the shoreline).

Figure 15 shows the free surface displacement 
ηAη  at point A when a high crest occurs at that 
point: it is calculated by means of Eq. (58) by con-
sidering wave data of Figure 14.

Figure 16 shows also the free surface displace-
ment ηBη  at point B when a high crest occurs at 

Figure 14. Record of free surface displacement in the 
NOEL laboratory: duration of 300 s with sampling fre-
quency of 10 Hz.
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Figure 15. Free surface displacement when a high crest 
occurs, during the sea state plotted in Figure 14.
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Figure 16. Let us consider a high crest occurring at 
point A, where free surface displacement of  Figure 14 
is measured: the free surface displacements at points 
A and B, calculated with Equations (58) and (60) 
respectively.
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point A. Note that ηBη  is obtained from Eq. (60), 
with the cross covariance (61) calculated from free 
surface displacements recorded at points A and B 
simultaneously. From comparison between ηAη  and 
ηBη  it is possible to determine the dominant wave 
direction of the sea state: it will be a function of 
the phase shift and of the wave celerity, as shown 
by Boccotti (2000).

10.1 Wave pressures and wave forces

If  a point C is considered, under the water surface, 
where a pressure transducer records the random 
process fluctuating wave pressure ηph, given the 
high crest in A, we have

ηphCη o C AC AHC( )ot To ( ) / (A )=)T ΨAC ( )T / 0 , (62)

where

ΨAC A phC( )T ( )t ( )t T >)TηpηAA( )t . (63)

With the same logic, QD theory may be applied 
to wave forces. An example is shown in Figure 11, 
where the wave pressures at transducers 1–8 and 
the wave forces Fy and Fz are plotted, when a high 
wave of the pressure at gauge 1 occurs.

11 CONCLUSIONS

In the paper the Boccotti’s quasi-determinism 
theory for representing the ocean wave groups 
when a high wave occurs has been analyzed, either 
to the first order or including the second order 
contribution.

Firstly, the waves in an undisturbed field have 
been considered, analyzing both two-dimensional 
(long-crested waves), and three-dimensional 
wave groups as a function of  the directional 
spectrum.

Nonlinear effects have been analyzed starting 
from the approaches proposed by Arena (2005) 
and Fedele & Arena (2005) (see also Arena & 
Guedes Soares, 2009a) for two-dimensional waves 
and by Arena et al (2008) for 3D waves.

Finally, the quasi-determinism theory has been 
applied to wave groups interacting with large struc-
tures. A large vertical cylinder has been considered, 
to analyze the diffraction effects, as well as a ver-
tical wall, including second-order contributions. 
It has been shows as the theory may be applied 
to describe the mechanics of ocean waves and to 
determine the wave force on a structure produced 
by high waves.

LIST OF SYMBOLS

E frequency spectrum
g acceleration due to gravity
H crest-to-trough wave height
HC crest amplitude
Hs significant wave height 
k wave number 
L wavelength
S directional spectrum 
Tp peak period 
T time
to fixed time instant
xo fixed point of the x-axis
X horizontal axis with origin at point xo

yο fixed point of the y-axis
Y horizontal axis with origin at point yo

z  vertical coordinate axis, with the origin at the mean 
water level

α wave amplitude
η random free surface displacement
η  surface displacement of deterministic wave groups
η1ηη  linear component of η
η2ηη  second-order contribution of η
ηph fluctuating wave pressures
ρ water density 
σ r.m.s. surface displacement of a sea state
φ  velocity potential of deterministic wave groups
Φ  covariance of surface displacement and velocity 

potential
ψ∗ narrow bandedness parameter
Ψ covariance of the surface displacement
θ angle between wave direction and y-axis
ω angular frequency
ωp peak frequency
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